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SUMMARY

Physical phenomena which can be described by the Rayleigh density function exist in many
areas of study; e.g., noise theory, lethality, radar return, etc. This report gives some of the basic
properties of the Rayleigh prcbability deasity function. It includes the functional relationships be-
tween the various parameters and graphical displays of these relationships. The density functions
for the sum and the product of two Rayleigh distributed random variables and the relationships be-
tween their various parameters are described. Illustrations of the use of the density functions are
given. Also included are complete tables of the Rayleigh density function and distribution func-
tion.




INTRODUCTION

In nature, physical phenomena in many areas of fields of science (for example, noise theory,
lethality, radar return, etc.) have amplitude distributions which can be characterized by the Ray-
leigh density function or some function which can be derived from the Rayleigh density function.
Because a literature search failed to turn up any major source of material on the Rayleigh density
function, this report was written to fill the need of those persons working with this density func-
tion to serve as a quick reference which would describe this density function and some of its
properties. The density functions for the sum and product of two Rayleigh distributed random
variables and the relationships between their various parameters are described.

The main text is devoted to the properties of the Rayleigh density function and examples of
applications. Derivations of the functional relationships are given in the appendix.

ONE RAYLEIGH DISTRIBUTED RANDOM VARIABLE

Definition of Rayleigh Density Function

A random variable X is said to have a Rayleigh density function p(x) if the probability den-
sity function is of the form

0 ifx <0

PR(X) = (N

x2

222

ize ifx>0
a

where a is a convenient parameter. p.(x) is illustrated in figure 1 and tabulated in table 1.

Rayleigh Distribution Function*

The Rayleigh distribution function PR(x) is given by

0 ifx <0

PR(X) = (2)

x2

*‘l-e 22 itx>0
This function is ilii strated in figure 2 in units of a and tabulated in table 2.
Elucidation of the Rayleigh Parameter (a)
As mentioned above, a is merely a convenient parameter and not the standard deviation for a
Rayleigh distributed random variable. It is simply the normalizing factor which is universally

used for this function. Its utility will be made evident in the following paragraphs.

* Current terminology will be followed with respect to the names density function, and distribution function.
Some authors call the former the probability distribution function, and the latter the cumulative distribution
function.

e —— — —— — -



060

0 50

02

000

000

100

1S5
a|« 2

Figure 1. The Rayleigh Density Function.
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Table 1. The Rayleigh Density Function pR(ua)

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
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0.00000 | 0.01000 | 0.02000 | 0.02999 | 0.03997 | 0.04994 | 0.05989 | 0.06983 | 0.07974 | 0.08964
0.09950| 0.10934 | 0.11914 | 0.12891 | 0.13863 | 0.14832 | 0.15797 ] 0.16756 § 0.17711 | 0.18660
0.19604 | 0.20542 | 0.21474 ( .22400 | 0.23319 | 0.24231 | 0.25136 ] 0.26034 | 0.26924 | 0.27806
0.28680 | 0.29546 | 0.30403 | 0.31251 | 0.32091 | 0.32921 | 0.33741 | 0.34552 | (. 35353 | 0.36144
0.36925 ] 0.3769S | 0.38454 | 0.39203 | 0.39940 | 0.40667 | 0.41382 | 0.42085 1 0.42777 | 0.43457
0.44125] 0.44781 | 0.45424 ) 0.46055 | 0.46674 | 0.47280 | 0.47873 | 0.48453 | 0.49021 | 0.4957S
0.50116 ] 0.50644 | 0.51159 ] 0.51660 | 0.52148 | 0.52622 | 0.53083 | 0.53530 | 0.53963 | 0.54383
0.54789 | 0.55182 | 0.55560 | 0.55925 | 0.56276 | 0.56613 | 0.56936 | 0.57246 | 0.57542 | 0.57824
0.58092 | 0.58346 | 0.58587 | 0.58815 | 0.59028 | 0.59228 | 0.59415 | 0.59588 | 0.59748 | 0.59895
0.60028 | 0.60148 | 0.6025S | 0.60349 | 0.60431 | 0.60499 | 0.60555 | 0.60598 | 0.60629 | 0.60647
0.60653 | 0.60647 | 0.60629 | 0.60599 | 0.60557 ]| 0.60504 | 0.60439 | 0.60363 | 0.60276 | 0.60177
0.60068 | 0.59948 | 0.59818 | 0.59676 | 0.59525 | 0.59364 | 0.59192 | 0.59011 | 0.58820 | 0.58620
0.58410] 0.58192 | 0.57964 | 0.57728 | 0.57483 | 0.57229 | 0.56968 | 0.56698 | 0.56420 | 0.56135
0.55842 | 0.55542 | 0.55235 | 0.54921 | 0.54600 | 0.54273 | 0.53939 | 0.53599 | 0.53253 | 0.52901
0.52544| 0.52181 | 0.51812 | 0.51439 | 0.51061 | 0.50678 | 0.50290 | 0.49898 | 0.49502 | 0.49102
0.48698 | 0.48290 | 0.47879 | 0.47465 | 0.47047 } 0.46627 | 0.46204 | 0.45778 | 0.45349 | 0.44919
0.44486 | 0.14051 | 0.43615 | 0.43177 ] 0.42737 ] 0.42296 | 0.41854 | 0.41411 | 0.40967 | 0.40522
0.40077 1 0.39631 | 0.39185] 0.38739 | 0.38293 | 0.37846 | 0.37400 | 0.369S5 | 0.36510 | 0.36065
0.35622| 0.35179 | 0.34737 | 0.34296 | 0.33857 | 0.33418 | 0.32981 | 0.32546 | 0.32112 | 0.31680
0.31250| 0.30822 | 0.30396 | 0.29971 | 0.29549 | 0.29129 | 0.28712 | 0.28297 | 0.27884 | 0.27474
0.27067 | 0.26662 | 0.26261 | 0.25862 | 0.25465 | 0.25072 | 0.24682 | 0.24295 | 0.23911 | 0.23530
0.23153 | 0.22778 | 0.22407 | 0.22040 | 0.21675 | 0.21315 | 0.20957 | 0.20603 | 0.20253 | 0.19906
0.19563 | 0.19223 | 0.18887 | 0.18555 | 0.18226 | 0.17901 | 0.17580 | 0.17262 | 0.16948 | 0.16638
0.16331 ] 0.16028 | 0.15729 | 0.15434 | 0.15143 ] 0.14855 ] 0.14571 | 0.14291 | 0.14014 | 0.13741
0.13472] 0.13207 | 0.12945 | 0.12687 | 0.12433 | 0.12183 | 0.11936 | 0.11692 [ 0.11453 | 0.11217
0.10984 | 0.10755 | 0.10530 | 0.10308 | 0.10090 | 0.09875 | 0.09664 | 0.09456 | 0.09251 | 0.09050
0.08852 | 0.08658 | 0.08467 | 0.08279 | 0.08094 | 0.07913 | 0.07735 | 0.07559 | 0.07387 | 0.07219
0.07053 | 0.06890 | 0.06730 | 0.06573 | 0.06419 | 0.06268 | 0.06120 | 0.05975 | 0.05832 | 0.05693
0.05556 | 0.05421 | 0.05289 | 0.05160 | 0.05034 | 0.04910 | 0.04788 | 0.04669 | 0.04553 | 0.04439
0.04327{ 0.04218 | 0.04111 | 0.04006 | 0.03903 | 0.03803 | 0.03705 | 0.03608 | 0.03514 | 0.03423
0.03333]1 0.03245 | 0.03159 | 0.03075 | 0.02993 | 0.02913 | 0.02834 | 0.02758 | 0.02683 | 0.02610
0.02538 | 0.02469 | 0.02401 | 0.02334 | 0.02270 | 0.02206 | 0.02145 | 0.02084 | 0.02026 | 0.01968
0.01912 ) 0.01858 | 0.01805 | 0.01753 | 0.01702 ] 0.01653 | 0.01605 | 0.01558 | 0.01513 | 0.01468
0.01425] 0.01383 | 0.01342 | 0.01302 ] 0.01263 | 0.01255 ] 0.01188 | 0.01152 | 0.01117 | 0.01083
0.01050 | 0.01018 | 0.G0987 | 0.0(:956 | 0.00927 | 0.00898 | 0.00870 | 0.00843 | 0.00816 | 0.00791
0.00766 | 0.00741 | 0.00718 | 0.00695 | 0.00673 } 0.00651 | 0.00630 ¢ 0.00610 | 0.00590 [ 0.00571
0.00552{ 0.00534 | 0.00517 | 0.00500 | 0.00483 | 0.00467 | 0.00452 | 0.00436 | 0.00422 | 0.00408
0.00394 | 0.00381 | 0.00368 | 0.00355 | 0.00343 | 0.00331 | 0.00320 | 0.00309 | 0.00298 | 0.00288
0.00278 | 0.00268 | 0.00259 | 0.00250 | 0.00241 | 0.00233 | 0.00224 | 0.00217 | 0.00209 | 0.00201
0.00194 | 0.00187 | 0.00181 | 0.00174 | 0.00168 | 0.00162 | 0.00156 | 0.00150 | 0.00145 | 0.00139
0.00134 | 0.00129 | 0.00124 | 0.00120 | 0.00115 | 0.00111 | 0.00107 | 0.00103 | 0.00099 | 0.00095

R e 5 i e e e e e e s

Eme*




09

08

07

06

— 05

:A.Iu

04

03

02

01

ov

—
00 10 20 30

y

]

Figure 2. The Rayleigh Distribution Function.
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Table 2.

The Rayleigh Distribution Function P.(ua)

0.00

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.00¢:00
0.00499
0.01980
0.04400
0.07688
0.11750
0.16473
0.21730
0.27385
0.33302
0.39347
0.45393
0.51325
0.57044
0.62469
0.67535
0.72196
0.76425
0.80210
0.83553
0.86466
0.88975
0.91108
0.92899
0.94387
0.95606
0.96595
0.97388
0.98016
0.98508
0.98889
0.99181
0.99402
0.99568
0.99691
0.99781
0.99847
0.99894
0.99927
0.99950
0.99966

0.00005
0.00603
0.02181
0.04691
0.08061
0.12195
0.16977
0.22279
0.27967
0.33903
0.39353
0.45993
0.51908
0.57601
0.62993
0.68020
0.72639
0.76824
0.80564
0.83863
0.86735
0.89205
0.91302
0.93061
0.94520
0.9571S8
0.96683
0.97458
0.98071
0.98551
0.98922
0.99206
0.99421
0.99582
0.99701
0.99789
0.99852
0.99897
0.96930
0.99952
0.99968

0.00020
0.00717
0.02391
0.04991
0.08442
0.12646
0.17486
0.22833
0.28552
0.34505
0.40560
0.46591
0.52489
0.58155
0.63512
0.68501
0.73077
0.77218
0.80914
0.84169
0.87000
0.89431
0.91492
0.93220
0.94651
0.95821
0.96768
0.97526
0.98124
0.98592
0.98954
0.99231
0.99440
0.99596
0.99711
0.99796
0.99857
0.99901
0.99932
0.99954
0.99969

0.00045
0.00841
0.02610
0.05299
0.08831
0.13103
0.18000
0.23391
0.29139
0.35108
0.41166
0.47189
0.53067
0 58706
0.64029
0.68977
0.73511
0.77608
0.81259
0.84471
0.87260
0.89653
0.91680
0.93376
0.94779
0.95926
0.96852
0.97592
0.98177
0.98633
0.98985
0.99254
0.99457
0.99609
0.99721
0.99803
0.99862
0.99905
0.99935
0.99956
0.99970

0.00080
0.00975
0.02839
0.05616
0.09226
0.13567
0.18519
0.23952
0.29728
0.35712
0.41772
0.47785
0.53643
0.59253
0.64541
0.69450
0.73941
0.77993
0.81600
0.84768
0.87517
0.89871
0.91863
0.93529
0.94904
0.96028
0.96934
0.97657
0.98228
0.98672
0.99016
0.99277
0.99475
0.99622
0.99731
0.99810
0.99867
0.99908
0.99937
0.99957
0.99971

0.00125
0.01119
0.03077
0.05941
0.09629
0.14037
0.19043
0.24516
0.30320
0.36317
0.42377
0.48379
0.54217
0.59798
0.65050
0.69918
0.74366
0.78373
<.81936
0.85062
0.87770
0.90086
0.92044
0.93679
0.95028
0.96127
0.97014
0.97721
0.98277
0.9871%
0.99045
0.99300
0.99491
0.99634
0.99:40
0.99817
0.99872
0.99912
0.99940
0.99959
0.99973

0.00180
0.01272
0.03324
0.06275
0.10040
0.14512
0.19571
0.25084
0.30913
0.36922
0.42982
0.48972
0.54788
0.60339
0.65555
0.70382
0.74787
0.78750
0.82268
0.85351
0.88018
0.90298
0.92221
0.93826
0.95148
0.96225
0.97092
0.97783
0.98326
0.98748
0.99074
0.99321
0.99508
0.99646
0.99749
0.99823
0.99877
0.99915
0.99942
0.99961
0.99974

0.00245
0.01435
0.03579
0.06616
0.10457
0.14994
0.20104
0.25655
0.31508
0.37528
0.43586
0.49563
0.55356
0.60877
0.66056
0.70842
0.75203
0.79121
0.82596
0.85636
0.882%63
0.90505
0.92396
0.93970
0.95266
0.96321
0.97169
0.97843
0.98375
0.98785
0.99102
0.99342
0.99523
0.99658
0.99757
0.99829
0.99881
0.99918
0.99944
0.99962
0.99975

0.00319
0.01607
0.03844
0.06966
0.10881
0.15482
0.20642
0.26229
0.32104
0.38134
0.44)89
0.50152
0.55922
0.61411
0.66553
0.71298
0.75615
0.79489
0.82919
0.85917
0.88504
0.90710
0.$2567
0.94112
0.95382
0.96414
0.97243
0.97902
0.98419
0.98821
0.99129
0.99363
0.99539
0.99669
0.99765
0.99835
0.99885
0.99921
0.99946
0.99964
0.99976

0.00404
0.01789
0.04118
0.07323
0.11312
0.15978
0.21184
0.26806
0.32703
0.38740
0.44791
0.50740
0.56484
0.61942
0.67046
0.71749
0.76022
0.79852
0.83238
0.86194
0.88742
0.90910
0.92735
0.942¢50
0.95495
0.96506
0.97317
0.97960
0.98464
0.98855
0.99155
0.99383
0.99554
0.99680
0.99773
0.99841
0.99890
0.99924
0.99948
0.99965
0.99977
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Maximum Value of Rayleigh Dunsity Function

The maximum value of the Rayleigh density function which will occur when x = a in equation
1) is

o ;
2

max Ipp(0i = pp@) = L ¢ % = 1(0.60653) 3

0< x<oe

Mean of Rayleigh Probability Density Function

The mean of a random variable which has a Rayleigh density function is given by

hg = /3= a(1.2533) @

This relationship is illustrated in figure 3.

14

10

N

. /
/

0 1 2 3 4 5 6 7 8 9 10
e

Figure 3. The Relationship Between a, the Standard Parometer of the Rayleigh Density
Function, and the Meen of the Rayleigh Density Function,



Mean Square of Rayleigh Probability Density Function
The mear square of a random variable X which has a Rayleigh density function is given by
E(X?) = 242 (5)
Standard Deviation of Rayleigh Probability Density Function

The standard deviation of a random variable which has a Rayleigh density function is given by

og=a [2- 5 = 0.65514a (6

This relationship is illustrated in figure 4.

10
9 |
8 e -
|
‘ —T
\
| /
6 1 >
| | |
| 1
x 5 T‘ I /
° i /

N

0 1 2 3 4 5 6
a

~
o
o

10

Figure 4. The Relationship Between o, the Standard Parameter of the Rayleigh Density
Function, and the Standard Deviation of the Rayleigh Density Function.
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RELATIONSHIP BETWEEN THE RAYLEIGH DENSITY AND SOME WELL KNOWN
PROBABILITY DENSITIES

If X and Y are independent random variables which have normal density functions with respec-
tive means py, py and respective standard deviations ay, oy such that oy = oy and if

2 2
X- Y -
el (5
ox e /
then R is Rayleigh distributed with parameter a = 1. The random variable R is also said to have a
circular normal density.

If a random variable X has a chi squared density function with two degrees of freedom, then
VX has a Rayleigh density function.

JOINT PROBABILITY DENSITY FUNCTION OF TWO INDEPENDENT RAYLEIGH
DISTRIBUTED RANDOM VARIABLES

The joint probability density function of two independent Rayleigh distributed random varia-
bles X, and X, with respective parameters a, and a, is given by

0 ifxl<00rx2<0
"x,.xz("l"‘z)é ™

2 2
XX X X

A ;gexp[-(-—;-+ 22>] ifx,>0and x, >0
aja; ajy 2a;

This function is illustrated in figure 5.
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Figure 5. The Joint Probability Density Function of Two Independent
Royleigh Distributed Random Variables.



SUM OF TWO RAYLEIGH DISTRIBUTED RANDOM VARIABL ES
Density Function for Sum of Two Independent Rayleigh Distributed Rondom Variables

If X, and X, are two independent random variables with Rayleigh density functions and re-
spective parameters a, and a,, then the density function of the random variable Y - X, + X, is
given by

and if y > 0 it is given by

2 2
ayy 2 asy 2
Py() = ——— exp(- yz)* — exp(— yz)
(ay + a3) 2aj (aj + az) 2a;

2 ulu2[y2 = (a% + ag)l y2
v = exp |- ——— ®)
2 5 Aay + a2)

(af + “3)2

yﬂz

ya, 1
+ erf
a2 + ad) af2a? + ad) J

erf

where

erf() - 2
\ Tr

9 12
j'el dt
0

is the error function. The error function is extensively tabulated and very good numerical approxi-
mations exist.* Equation (8) is shown in figure 6 in terms of the standard deviation of Y.** The
distribution function for the above density function is shown in figure 7.

Mean and Standard Deviation of Sum of Two Rayleigh Distributed Random Variables

If Y is the random variable as in the density function of equation (8) above, then the mean of
Y is given by

Ry = /%(ul + "2) &)

The standard deviation of Y is given by

ay - \/(2 - g) (@} + a3) = 0.65514/a> + o2 (10)

¥ See National Bureau of Standards Applied Mathematics Series 55, Handbook of Mathematical Functions,

chapter 7.

** Note that in figure 6, a vanable which is the sum of two Rayleigh variables could easily be mistaken for
a normally distributed random variable. The only difference is the apparent skewness of the curve. Also
note that & variable which is the product of two Rayleigh variables could easily be mistaken for a single
Rayleigh distributed random  -iable (see figure 1).
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Figure 6. The Density Function of the Sum of Two Independent
Rayleigh Distributed Random Variables With Equal Farameters.
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PRODUCT OF TWO RAYLEIGH DISTRIBUTED RANDOM VARIABLES
Density Function for Product of Two Independent Rayleigh Distributed Random Variables

IfY = X,X, where X, and X, are independent random variables with Rayleigh density func-
tions with respective parameters a, and a,, then the density function of Y is given by

0 ify<0

Py®) = (11)

. (x4a2 " 02 2)
lim Y exp[———z——de ify>0

2 2 222
hi0vh  xajaj 2x aja;

This function is numerically integrated and then illustrated in figure 8. The distribution function
for the above density function is illustrated in figure 9.

0.7

0.6

05

/

>
°
1Y
o
w1
=
7.
2
_7;
203
(S
a.
0.2
01 \
00 1.0 20 30 40 5.0 6.0

y (IN UNITS OF oy)

Figure 8. The Density Function for the Product of Two Independent
Rayleigh Distributed Random Variables With Equal Parameters.
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Figure 9. The Distribution Function for the Product of Two Independent
Rayleigh Distributed Random Variables With Equal Parameters.

Meon and Standard Deviation of Product of Two Rayleigh Distributed Random Variables

If Y is the random variable whose density function is shown in equation (11), then the mean of
Y is given by

ty = %nl(z2 = 1.5708«‘(12 (12)

The standard deviation of Y is given by

>

oy =ajay\[4- ~ 1.2380a,a, (13)

EXAMPLES

Example 1. The use of table 1:

16



Suppose it is wished to know the ordinate of the Rayleigh density {unction at 2.14a. Then,
using table 1 and the notation of equation (1),

0.21675
PR(2-140) - 2

Example 2. The use of table 2:

Suppose one knows that he has a Rayle‘gh distributed random variable X and wishes to find
the probability that X < 1.67a. Then, using table 2 and the notation of equation (2),

Py(1.67a) = 0.75203

Example 3. The use of figures 1, 2, and 3:

Suppose a record of a probability density function which strongly resembles figure 1 requires
identification. A Rayleigh density function is then suspect and could be verified if a good esti-
mate of the Rayleigh parameter a was known. Since the value of a is determined by the abscissa
value at which the maximum value of the density function occurs, one can determine a immediately.
The value of a is thus known and the probability density can be obtained from equation (1) and
compared to the actual record. If a quick estimate of the mean and standard deviation is desired,
they can be obtained by equations (4) and (6) or by figures 3 and 4 as follows. Suppose a = 8.5,
then by figure 3 ug = 10.7 and by figure 4 o = 5.6.

Example 4:

The set of scalar miss distances of the AGM Splash 83K in table 3 is considered. It is de-
sired to characterize the population from which this set came. If it is assumed that the x and y
coordinates of this set of miss distances are independent, then this set is Rayleigh distributed,
and the population from which it came can be completely characterized. The sample mean is com-
puted in the usual manner.

n The sample size. In this case n = 30.

r, A data point, i.e., one of the given set of scalar miss distances.

T  The sample mean.

It is found that
T =249

Now from equation (4) or figure 3, an approximation for the a for this population can be found.

.- —r__ -199
" 12533

17



Toble 3. Data for Example 4

Scalar Miss Distances
for the AGM Splash 83K
. Miss Distance

Missile (Feet)
1 5.57
2 7.61
3 8.43
4 9.84
S 10.40
6 10.70
7 13.00
8 13.70
9 15.60
10 16.50
11 18.50
12 19.00
13 19.00
14 19.50
15 19.70
16 20.10
17 22.50
18 22.70
19 27.60
20 29.80
21 30.00
22 31.00
23 32.10
24 32.20
25 38.00
26 40.30
27 40.30
28 45.30
29 60.20
30 68.70

Hence, the probability density for the population can be estimated as

Pr(r) = L ~ exp [- ;jl
R (19.9) 2(19.9)>

It is now a simple matter to obtain some percentiles for the population. From table 2 find for
example:

Probability[R < 1.18a] = Probability[R < 23.5] = 0.50
Probability[R < 1.67a] = Probability[R < 33.2] = 0.75

Probability[R - 2.15a| = Probability[k - 42.8] = 0.90

18



Probability[R < 2.45a] = Probability[R < 48.8] = 0.95

Probability[R < 3.04al = Probability[R < 60.5) = 0.99
Probability[R > 1.49a - 29.7] =1.0-0.67 = 0.33
Probability[5.0 = .25¢ < R < 1.752=34.8] =0.78 - 0.03 = 0.75

Example 5:

Table 4 contains speeds in feet per second of the FIZZ 42A rocket at 3 seconds after launch.
This data is assumed to be Rayleigh distributed. The sample average is computed as

20
X = E%Zsi

i=l

where s, isa speed foreachi=1, 2, ..., 20

Hence,

% =3,295

Table 4. Data for Example 5

Speedof the FIZZ 42A Rocket

3 Seconds After Launch”
Speed

Regkst (Feet Per Second)
1 559
2 673
3 703
4 1,737
S 1,819
6 1,895
7 2,029
8 2,309
9 2,782
10 3,191
11 3,342
12 3,712
13 4,021
14 4,065
15 4,159
16 4,397
17 5,455
18 5,764
19 5,889
20 7.393

19



Wy

Then « can be obtained by referring to either figure 3 or equation (4). It is found to be
a= 2,629

Therefore, the probability density for the population from which our sample came can be estimated
as

pR(s) S e — exp [- _Lz_
(2,629)? 2(2,629)2

Also the percentiles can be easily obtained from table 2. For example:

Probability[S < 1.18a = 3,102] = 0.50
Probability(S < 2.15a = 5,652} = 0.90

Example 6:

Table 5 contains data of random sums of two sets of 25 miss distances for the AGM Splash
86. The theory developed for the random sum of two Rayleigh distributed variables can be utilized
in this instance.

The sample mean is computed in the usual manner as

where each r_ is a data point from table 5. Equation (9) is now used to approximate the sum,
1
a, + a,, of the original parameters of the populations of the sets of miss distances for the AGM

Splash 86. It will be assumed that these populations are identical, hence set a = a; = a, then

Ts ~ 75.3 e 30.0
ZF 2.5066
2

Now, by the use of equation (10), the standard deviation of the sum of two equal Rayleigh popula-
tions can be approximated.

as=s

o, = \Za(0.65514) ~ 28.8

Hence, by the use of figure 7, various percentiles for the population, which consists of random
sums of two Rayleigh populations, can be approximated. For example:

Probability[R_ < 2.650 = 76.3] = 0.50
Probability[R_ < 4.05¢ = 117.] - 0.90

Example 7:

Table 6 contains data which are random products of two sets of 25 miss distances for the
AGM Splash 86. For this case, the theory developed for the random product of two Rayleigh dis-
tributed variables can be used.
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Table 5. Data for Table 6. Data for

Example 6 Example 7
Random Sums of Random Products of
Miss Distances for Miss Distances for the
the AGM Splash 86 AGM Splash 86

Run Sum (Feet) Run Product (Feet?)
1 13.5 1 9
2 21.0 2 43
3 42.5 3 409
4 42.6 4 435
5 49.8 5 447
6 50.0 6 588
7 50.5 7 630
8 55.3 8 737
9 55.6 9 760
10 55.7 i 762
11 64.0 11 918
12 64.9 12 1,022
13 71.5 13 1,219
14 80.9 14 1,529
15 81.5 15 1,607
16 86.2 16 1,660
17 87.3 17 1,855
18 90.2 18 2,025
19 91.7 19 2,035
20 93.3 20 2,172
21 102.8 21 2,642
2z 1225 22 3,307
23 128.4 23 3,890
24 133.2 24 4,288
25 148.1 25 5,274

The sample mean is computed in the usual manner as

25
-1 .
ro= EZ'Pi _ 1,611

i=1

where each & is a data point from table 6. As in example 6, it will be assumed that the two orig-
i

inal populations were identical with parameter a = a; = a,. Using equation (12),

= 1,026

A

T,
P

is obtained. Hence, the estimated standard deviation of the new population (which consists of the
random product of two variables, one from each of the two original Rayleigh populations) is

o, 1.2380(1,026) ~ 1,270

21



Hence, various percentiles may be estimated using figure 9. For example,
Probability[Rp < l.03ap = 1,308) - 0.50

Probability[R | < 2.6d0_ - 3,353] - 0.90
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APPENDIX
MATHEMATICAL DERIVATIONS
PROPER7IES FOR ONE RAYLEIGH DISTRIBUTED RANDOM VARIABLE
The Rayleigh density function for a random variable X is defined as

0 if x<0

PR(x) (n

2
X exp(-x—) ifx>0
a® 2q°

where a is a convenient parameter. It is emphasized that a is not the standard deviation or the
mean of the Rayleigh density. It is merely a convenient parameter with which to work. This
utility of @ will be made evident in the following discussion.

The Rayleigh distribution function is given by

0 ifx<0
P(x) = )
2
-fx—t- exp (—L) dt x>0
0 42 24°
Performing the indicated integration
0 if x<0
Pe(x) - 3

2
1 - exp (_x_) ifx>0
2a>

A series of calculations for the mean, mean square, and the standard deviation of the
Rayleigh density function in terms of a is now given. The mean is given by

"R E(X) j:)Tpr(x) dx = ‘/?a (9

The mean square is given by

is obtained.

X2) - [ x2p4(x) dx - 22
E(X?) j;pr(x) x
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The variance is given by
"fe E(X?) - “fe 2¢2 - Z o? a2(2 - :) (5
Thus we have the following relationship

T - 2- = 6
(R a 2 ()

for the standard deviation of the Rayleigh distribution in terms of a.

To find the value of x at which the peak or the mode of the Rayleigh density function occurs,
the derivative is taken and set equal to zero. Then, the resulting equation is solved.

X2 X2
d x _ 2°f 1 2\ 1 _ 2%
L X)) - = e —— e D]t — e -0
dx pR() a? ( 2a? 1) a?
Therefore,
2
2o =1
2
a
And, since x>0,
X-a @

is the value of x at which the maximum occurs.

The maximum value of p(x) is given by
1 J1) L 1
pr(@ - L exp ( 2) - 0.60653(a)

(&3

from this result one can see immediately the utility of the ‘‘convenient’’ parameter a.

THE SUM OF TWO RAYLEIGH DISTRIBUTED RANDOM VARIABLES

Now that the case of one Rayleigh distributed random variable has been explained, the result
of adding together two such independent variables can be considered.

If X, and X, are independent Rayleigh distributed random variables with respective param-
eters a, and a,, the stochastic variable Y = X, + X, is considered. It is desired to obtain the
density function and associated properties of Y.

The density functions of X, and X, are denoted by py (x,) and py (x,) respectively. Also
1 2
the distribution functions of )(l and X2 are denoted by Px ("l) and Py (x,) respectively. Simi-
1 2 -
larly pY(y) and Py (y) denote the density and distribution functions of Y. Also Px x (xl ,x2) and
1"

Py x (x,.x,) denote the joint probability density and distribution functions of X, and X,. Then,
ez -
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Py(y) = ProbabilitylX, + X, < yb= Py x [l0x . %)% + x, < yl

: ff P, x (}1%) dxy 4%,

By %)%y + %, <yl

y| pv-x,
= X, ,X,) dx, | dx
fo [fo Px,,xz( 1+%2) 2] |

The notation ProbabilitylX, + X, < yl is to be read ‘‘the probability that X, + X, < y.”’ The
notation l(xl,xz):xl + %Xy < yl is to be read ““the set of all ordered pairs (x,.x,) such that Xy +
X, <y”

2 -

The transformation
)(l = )(l

%

t-x1

is now performed. The Jacobian of this transformation is J(x,,0 = 1. Also, x, = 0 implies t - x,
and x, =y - X, implies t = y. Hence,*

y y
3= U= x.)dt] dx
Pyt - [ [j:lpxl,,(z(x, D ] !

This last quantity is differentiated with respect to y using the formula of Leibniz. ** For sim-
plicity, let

y
F(x,y) = R dt
(x Y) j;lpx vxz(x‘ xl)
then
y
Py(y) = fo F(x,.y) dx,

Hence, the derivative is

*Taylor, A. E., Advanced Calculus. Ginn and Company, p. 430.
**Sokolnikoff, I. S. and E. S. Sokolnikoff. Higher Mathematics for Engineers and Physicists. New York,
McGraw-Hill, pp. 167-~169.
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Now note that
. y
F(y.y) f Px x (vt -y)dt
y a2
is zero because the integral over one point is zero. Also :—0- is zero and

y

F
:T;(leY) = erxz(xl Wy - Xl)

Hence the density functionof Y

y
Py()') j; le’xj(xl Wy - xl) dx‘
is obtained. It is now noted that since Xl and )(2 are independent random variables,

Px . x (x.%3) = py (x))px (x5)
1’2 1 2
Thus,
y
( X - x,) dx
Py y) j; px’( l)sz(y 1 1

Substituting the Rayleigh density function for py (x,) and py (y - x,) in the above, one obtains
1 2

[ufy2 - 2xyn¥ ' xz(a:f) + a%)]

y
Py(¥) ,sz (xy - x*) exp{- dx
aja; *0 2(1%(1%

The next task is to determine this function in closed form or in terms of known tabulated func-
tions. To facilitate the algebraic manipulation, several substitutions will be utilized. If

: =2
) yy
B ufy2
) 3
W ni‘ 4 (15
] 1
2(1?{12
then

v 2
Py(¥) 2L’:e“".[ (xy - x2)e~ v (wx7=27%) gy
)

26
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2
If the exponential expression could be changed to the form e”¥'* | it would be easier to manipu-
late. Hence, suppose

22 - (ax + b)? - wx? - 2yx + &

where & is some constant. Since (ax + b)? = a?x? + 2abx + b?, equating coefficients of x2, x, and
the constant term with a, 2y, and & respectively

,

are obtained. Therefore, let z = \/w x -—’): then
Vo

72

bl

Py(¥) e Vie fy(xy - x2) exp (-yz?) dx
(1]

Also, the constant term can now be consolidated into

2
| y |
/ - o
a, 2 exp u(ﬁ m)

The integration can now be accomplished over z, thus

dz - o dx

and x, =0 implies z -—);; x, = y implies z = \’Ey-L. Also
VW \’(j

Voz 4y

(V]

If the following simple expressions are introduced for the limits of the integral,

27
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then

3 P 2 - 2
ofNwzZy tyy w2zt v wzy + ¥\ _ .2
Py(y) aof o(\ ¥y . )e ve® dz
k

—-—=
Vo

a 2
8y )
al 0] (y (l))
a
0
32 = —3
2

then the resulting integral is

r y -2 4 (=2 C
pPy(y) = a %2¢"*7 dz + a °22e"v% dz + a Oe”
Y 1 A 2 A 3 A

This last expression is now recognizable as one in which some of the integrated terms can be
solved in a closed form and some of the terms can be solved in a \oim for which there exists
excellent numerical approximations and tabulations. Each of the preceding three integrals will
now be considered separately since each one involves a different type of evaluation. For con-

venience, set

28

«)

2
2
2zy y ~y2? g,
(1)2 %
1)
7 12
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Evaluating ll'

4 a 2 -y
0 _ 1 fa-vk" e T0
Kk pY,

is obtained. To evaluate I, the error function defined by

2]
erf() Lf et dt 0

>
V70 -

0

and the definite integral

2 T 2
"I e dt - 1
\:j;

are utilized. Therefore,
T2 \'7"'
f e ! dt = ~—[1 - erf(0)]
A 2
and

PPRL. VT
'[1 e™' dt T[e'f(02) - erf(()l)l

It is noted that erf(-f) = - erf(/). Now, to obtain l3 in terms of the error function, let { = z\/z
then

I % .[zoﬁe' 3 d¢
3 —
Vo R/

83 \ b1 B —
— 2—[erf(g0\ U) = erf(ky )}
v

And, since
ya
ky/ur Spm—— g <0
\/5(1;,)/(1? + (l%
and
2
ya
4o 2 >0
ay ¢ “g



it follows that
a; 7 -
I - 5 \/—,[erf(go\ ) + erf(<ky7))
w
Finally, to evaluate

4 2
I, a\,,."°z2e"z dz
“ %k

it is necessary to integrate by parts. Thereafter the procedure is similar to that employed in the
evaluation of I,. Hence, if

u -2z du - dz
2 L2
dv - ze™¥% dz v =- e V2
U

then

2
S22 g e, 2K
20 70 )
82\

3 lerf(LyV) + erf(-k\U)]

42

Then, in final form,

Py =1 + 1, + 1

a 2 =yt Ay _ _
. (o A | ‘/:[erf(g'o\ U) + erf(=ky )]
22U 2 U i

- 2
- 3% Vi ak o vk’
2 pIv}
a, 7’

y v2
A (a;+ a,k) e-.‘kz _ (a; +a,¢0) g T

22U 2ur

a, = — =
+ (aj N ﬁ)(% /E_)[etf(r_:o\ U) + erf(-kyU)l
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The reader can now substitute back to obtain a form consisting of the original parameters and
variables. After tilese substitutions,

) ajy ( y* a3y y2
M TN ) @ T\ 2l
' (11(12[y2 - (nf 4 af)] - y2
(uf ’ ag)g 2((1% 4+ ag)
- ya, ya,

—lerdf e | —— ——

2 (11\/2((1]2 ' u%) a2\/ 2((1‘;') ' ag)

This is a convenient form for the density function of the sum of two randomly distributed Rayleigh
variables since there exist extensive tables of the error function. There also exists extremely
good numerical approximations,*

It is now desired to obtain the mean and standard deviation of py(y) in terms of a, and a,.
The means of X, X,, and Y are denoted by Hx l‘x2 and iy. Hence

a w By
ity j; ypPy(y) dy j(;fo(xl*xz)l)xl(xl)pxz(xz) dx, dx,

[+ 4] @
) j; xlpxl(xl)dxl + fo xszz(xz) dx2

L i
lxl Ix2

WECREN

Also, if the respective standard deviations of Xl, X2 and Y are denoted by Ox +Ox s and Oy then
1 2

o2 j; (v = ny)?Py(y) dy

2 2
ag + 0
xl x2

((lf + aé) (2 - %)

This completes the analysis of the sum of two independent Rayleigh distributed random vari-
ables.

* National Burean of Standards Applied Mathematics Series 55, Handbook of M..hematical Functions,
chapter 7.
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THE PRODUCT OF TWO RAYLEIGH DISTRIBUTED RANDOM VARIABLES

It is also possible to consider the case of a product of two Rayleigh distributed variables
and obtain some properties of the resulting random variable,

If X, and X, are independent Rayleigh distributed random variables with respective param-
eters a,, a,, then Y X, X, i considered. It is desired to find the probability density function

of Y and the mean and standard deviation of Y in terms of the original parameters 2y, a,.

To find the probability density function of Y it is first noted that since X, and X, are inde-
pendent random variables, the joint probability density function X, and X, is given by

pxl.x,’(xl 'xz) Px l(xl )px2(x2)
where py (x;) and py (x,) are Rayleigh probability density functions. Now, if F',(y) is the prob-
1 2
ability distribution function of Y, then
Py(y) - Probability[ X, X, < y] - Probability[I(x,.x,):x, x, <yl

ff le,xz("l"‘z) dx; dx,

Hxy %)%y Xy < i

x'<

@
limf dx f 'p (x,,x,) dx
110 ¥h 1 0 )(l,)(2 1°72 2

The transformation

Xl X
t
x2 ;

is now performed. The Jacobian of this transformation is J(x,t) - % Also, x, - 0 implies t; =0,

which implies t - 0, and x, - % implies% % which implies y = t. Hence,*

® v
P lim dx | (x, t—) dt
52 hi0 jr: j(') le,xz X/ x

Now differentiating with respect to y, the density function of the random variable Y is obtained as

: . Y\ dx
oy~ tim [“px x (x %) &

. oy (x“ag + afyz)
= lnmf exp |- —=—>—— dx
ho ¥h xnfrlg 2x aja;

This result is integrated numerically.

*See National Bureau of Standards Applied Mathematics Series 55, Handbook of Mathematical Functions,
chapter 7
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Now, since the variables X, and X, are independent, the mean and standard deviation of Y
are easily obtained. The mean is given by

Ry = 'IO. YPY()’) dy - _’; J(; XIXZPXI(XI)PXZ(XZ) dxl dxz

@ @
- X x,) dx f * (x,) dx, =
J; 1le( 1 1 J, 2Px %? Vg =By Hx,

.7
—alaz

2
The mean square is given by

@

@ @
E(Y?) - _I; yzpy(y) dy = fo j(; xfxgpxl(xl)pxz(xz) dx,; dx,

= x (x,) dx b3 (x,) dx
_‘; 1")(l 1 1_'; 2F’x2 2) 9%,
- EXDHE(X2)
2 2
= 4ala2
Thus,
oy = VEOYD) - 2

2
i
- aja, [4-

4

The pertinent features of the product of two independent Rayleigh distributed random variables
arc now established.
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